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Population dynamics in the Penna model
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We build upon the recent steady-state Penna model solutidh Coe, Y. Mao, and M. E. Cates, Phys. Rev.
Lett. 89, 288103 (2002] to study the population dynamics within the Penna model. We show that any
perturbation to the population can be broken into a collection of modes each of which decay exponentially with
its respective time constant. The long time behavior of population is therefore likely to be dominated by the
modes with the largest time constants. We confirm our analytical approach with simulation data.
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[. INTRODUCTION putationally and the population controlled by the use of a
Verhulst factor[11] which controls either the birth rate or
Genes, mutation, evolution, and ageing have been topioaxternal death rate. The bit string is 32/64 bits long to enable
of intensive researcfil—5|, particularly after the recent Ge- bitwise manipulation on integer-type variables. The finite
nome project. In 1995, a bit-string computer simulationlength bit string is an artifice of simulation and is not an
model for population evolution was introduced by Pefla  important consideration when approaching the model ana-
which successfully encompassed all those elements. Thgtically. A solution to the Penna model in the steady state
Penna model, essentially a mutation accumulation modehas been developed and is capable of dealing with a wide
has been so successful that it has rapidly established itself a8nge of modifications to the model, namely arbitrary birth
a major model for population simulatiof4]. Recently, ana- and survivability function$8].
lytical solutions have been presented for the steady states of By building upon the steady state solution it is possible to
the Penna mode]7,8], shedding insights into the inter- consider dynamic behavior. The simplest form the steady
relationships between various Penna parameters of the simatate solution takes is for the simple Penna model in which
lation model. Here, we build upon this analytical frameworkthere is no nongenetic source of death, an organism dies after
to study populations undergoing steady growth or declinea single diseaseT(=1) and can reproduce with equal prob-
and to study the transient behavior of the model when thebility at any point during its life. For simplicity we present
system is away from its steady-states. Previous attef@pts our dynamics analysis within this simple Penna model, since
to analyze the population dynamics did not have the advanit is straightforward to generalize to the caseTof1 [8].
tage of the full analytic steady state solutiogh8] and con- The steady state solutidi7] to the simple Penna model is
sequently could not fully explore the dynamics of the model.given in brief below.
We find that the fluctuations in a population away from An organism within the Penna model can be uniquely
steady state can be decomposed into a collection of modeharacterized by its age and the number of 0s on its bit
each of which decays exponentially with its respective timestring before the first 1. The number of Os determines how
constant. The long time behavior of a population will there-long the organism lives and is termed its string-lengith
fore be dominated by the modes with the largest time conWheren;(x,l) is the number of organisms with ageand
stants. Our analytical results are confirmed by comparisostring lengthl at time step,
with simulation results.

IIl. THE SIMPLE PENNA MODEL n;+1(0,|)=befﬁlxgo nj(x,1)+mbe X X ni(xl"),

I’>] Xx=0

In the Penna moddl6], an organism’s genome is repre- 1)
sented by a bit string. Organisms age in time steps and at
each_timgstep an organism_ reads the corr_espondipg bit frofjhereeA=1—m is the probability of avoiding a mutation.
the bit str[ng(e.g., second site at age X a site contains a 1 nthe stationary state; . ;(x,1)=n;(x,1) and given that an
the organism develops a disease, and once it has accumulat&%anism with string length lives for | time steps, the sum
T diseases it dies. In any time step an organism can repreyer ages oh(x,1) is In(0,). The sum over ages is written
duce with probabilityb. The child’s bit string is a copy of the asn(l)=3,n(x,1). Then Eq.(1) simplifies to
parent’s with a probabilityn of each site mutating into a 1. R
Positive mutations are rare in natu@a 1 mutating into a 0
is forbidden in the model. Variants of the Penna model exist o n(l) 4 -
in which an organism can only reproduce between certain 0=be Bn(l)—|—+mbe A (), @
ages, and in which there is an external death rate giving each .
organism a genome-independent chance of death in any time
step. This expression can be solved to generate a recursion rela-

Traditionally [10] the Penna model is implemented com- tion (see Fig. 1
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FIG. 1. Life-span distribution for a simple Penna model with  FIG. 2. Life-span distributions for a Penna model undergoing
I max=30, B= 330 Analytical results(X) are compared with those steady growth withl,=30, r=0.05 (+) and |,,=30, r=
from simulation(dJ). Simulation size 10 —0.05(A).
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% we label the rate of growtlr, then in any time step the
number of young produced istdr times that in the previous
time step. Once the population has been growing in this man-
ner for some time, populations at successive iterations are

For any population there is a maximum sustainable strin
length | ., the stability analysis of which8,7] leads the
stationary-state interdependencebadnd 3

| < 1 (4) related byn;,1(x,1)=(1+r)n;(x,1). As in the steady state
M e B’ casen(l) is defined to be the sum over agesngk,1). We
defineL,(l) so thatn(l)=L,(1)n(0,). This leads to a sim-
1 plified steady-growth equation
b= I_eﬂl max (5) B

max 4 (1+r) 4
0=be #n;() = —-n(h+mbe A X ny(l"). (7)
For finite-length bit stringd, ., Of course cannot exceed the L. (1) 1>
bit string itself. o

whereL (I) is given by

IIl. DYNAMICS IN THE SIMPLE PENNA MODEL I

1
. . . 1-{——
Penna model dynamics can be divided into three cases. 1+r
(@) The birth rate or/and mutation rate are altered from L(h)= 1 ®
their steady-state values leading to growth or decline of the 1- 1ir

total populationn, and associated changes in the distribution
n(l) of the subpopulations with string lengths

(b) A change inn(l) from the steady state distribution
predicted in Eq.(3) is followed by relaxation back to the
steady state.

(c) Within a subpopulatiom(l), the distribution of ages |
n(x,1) can fluctuate with time if the population is not in n(+1) = L +1) (1+r)ef-bLi(l) _
steady state. n;(1) L) (1+r)eflt*D—pL(I1+1)e #

9

The conditions for steady growth give a limit on the value
With an unsuitable choice of birth rate, mutation rate, andof the maximum sustainable string lendith,, and determine

maximum string length present in a population, stationarythe value of the birth raté:

state behavior will not be found. Eventually the behavior of

The steady-growth equation can be manipulated to give a
recursion relation for the relative sizes of successiyg)
(see Fig. 2

A. Steady growth and decline in the simple penna model

the entire population will be dominated by the growth or 1-ef

decline of the longest type. The population can exist in a In m

state of steady growth or decline in which the relative sizes | , (10)
of subpopulations remain the same. The governing equation In L

can be written as 1+r
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re.Bl max
= 1 max

(11)

1+r

In the limit of vanishingr, a power series expansion of these

expressions will give, to leading order, E¢4) and(5).

B. Subpopulation dynamics in the simple penna model

For subpopulation dynamics we consider the time-step

evolution of an arbitrary distribution af(l) (I=<I,,5) Where

the birth and mutation rate take their steady-state values. The
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dynamics of subpopulations within the Penna model can be
considered to be that of a series of decay modes. Any sub- FIG. 3. A, (+) and decay timer, (A) plotted against, for a

population can be expressed as the sum over contributiorsimple Penna model with,,,,=30, 8= 35

from a set of decay modes such that

nj(x,|)=; Ay i(x,1), (12

where the constant8, are to be determined. Within each
decay mode, labeled by its indé&xthe population dies away
exponentially so that

Nij+ 106D = (=N j(x,1). (13
Within each mode there is a maximum value lo&bove
whichny (1) is zero, this is labeletl,. The mode index is

1

whereL (l) is given by

1
L) = ——5—— a7

Each mode mimics the behavior of a population undergoing
steady decline, as given in E(). Note that the dynamic
nature of this model means that the general steady-state so-
lution presented in Ref8] does not give a recursion relation

within the mode. Once the relationship betweg(x,|) and
n;+1(x,1) has been established Ed) can be considered to

the recursion relation above gives that from the steady-state
Penna model.

be a sum of eigenequations each of which governs the be- k(1) retains its meaning from the steady-state analysis
havior of a given mode. The equation governing the time-&S @ sum ofny ;(x,I) over agesx. As in the steady-state

step evolution of the longest string length within a mode cargnalysis, Li(l)

be written as

N j+1(0] k>=be-ﬁ'kxzo N (X, 1) (14)

Since the time-step evolution of ;(x,) is known from Eq.
(13) the sum over ages can be evaluated apdientified as
the solution to the equation

gives the sum over agesn;(l)
=L ()n;(0l). The decay mode for which=1. has a
decay rate of 0 X,=0) and is the steady-state solution.

An arbitrary distribution of;(l) can be broken down into
a sum over decay modes. Decomposition ofnaft) distri-
bution into decay modes can be done using a “top down”
approach: The largest value lofor which n;(l) # 0 gives the
I, value for the largest moded, is then chosen so that

0.25
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§ o0df
The characterstic decay timg for any mode is defined as % Qﬁs it
the time taken for the mode to decayeo® of its initial size = W& T
(see Fig. 3. 005 1 Q%iﬁ .
Manipulation of Eq.(1) for an individual mode gives a (A*ﬁ%%)r ‘ ot
recursion relation for the relative sizes of subpopulations s 5 10 15 20 25 20

within a mode(see Fig. 4
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FIG. 4. Sizes of subpopulations within decay modesﬁ@r;lo,
I max=30 with [,=25 (+), 1,=20 (A) andl =15 (X). These plots
have been rescaldthey are not all normalized to 1o plot them all
on the same axes.
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n; (1) =Akng (). Having determined, , A, _, follows as: 300000

nJ(Ik_ 1):Aknk’j(|k_ :!.)‘l‘Ak,lnk,lvj(lk._ 1) Th|$ prOCG_SS 250000 |

is repeated, accounting for all contributions from higher

modes at each until all A, are determined. Any distribution 200000 |

of n;(I) [n(1)=0 for I>1,J can be uniquely broken down _ e

into decay modes. T ——
C. Age distribution dynamics in the simple Penna model 100000 |
The dynamic and steady state behavior of the simple 50000 |

Penna model is dependent on the distribution of ages taking

a particular form. An arbitrary distribution afi(x,l) will °5 o 700 50 200

have its own dynamic behavior and must be considered as a
separate case. In the simple Penna model the evolution of
n(x,!) over time without contributions from mutation can be  FIG. 5. Aplot ofn(25) against time from simulation results. The
dealt with by a Leslie matrif12] of rankl acting on a vector ~Population is initialized witm(0,25)= 10" and all othem(x,1) set
n(x,!) where the vector components correspond to ages. Edp zero. The sudden drop in population at 25 time steps arises be-

Time

n(x,!) the allowed ages are 0,1,2,3,.,|—1 and the time cause all of the initial population die once they reach age 25. After
S'[EF,) evolution can be descrii,Je,drb,y,the following matrix 100 iterations the noise induced by age distribution dynamics has
equation: essentially disappeared and the population dies away exponentially
’ with time constantr, of 832.4.
n(oJl) n(oJl)
n(1)l) n(1)) lowed to run generating data fo(l) at each iteration. As the
maximum life-span in the population is less theg,, the
n(2l) =A| n@h |, (18 population will eventually decay away to nothing. The spike
n(3,\) n(3,\) was chosen as the initial distribution as any initial distribu-
. ' : ' tion can be considered to be a sum of such spikes.
i1 ] Initially the dynamics ofn(25) will be dominated by age

distribution dynamics and cannot be explained in terms of
modes. After 100 iterations this noise has all but disappeared
be # pe B pe B pe B . and the subpopulation can be seen to decay exponentially as
predicted by Eq(13) (see Fig. 5. All other subpopulations

where the matribA is given by

1 0 0 0 initially grow to later enter a period of exponential decay
0 1 0 0 ol (19  (see Fig. 6.
0 0 1 0 Considering the population after 100 iterations, modes

with 7,<<100 will play an insignificant part in the long term
dynamics of any subpopulation. After large number of time
stepst, each subpopulation, to a good approximation, can be
represented by the highest few mod&sth largest decay

n(x,j1=€én(x,);, (20) times:

We require eigenvalue solutions to this so that

where¢ are the eigenvalues of the matéx These eigenval- 450000
ues can be identified as nonunity solutions to the polynomial

400000

g7l—(be +1)¢+be P'=0. (21) o 50000
&% 300000 |

The large eigenvalues give decay at roughly the rate pre-  § 550000 |
dicted from then(l) analysis and oscillation around this de- T?i 200000 -
cay. The small eigenvalues play no significant part over large &
time scalesé,,, the largest eigenvalue, is related to the de- 3 1e0o0or
cay rate of the decay modey;(l) by N=1—E&nay. If | 100000 ¢
<1/\y then the long term behavior of any perturbation in 50000
n(l) will be dictated by a series of decay modes. 0

0 500 1000 1500 2000 2500 3000
Time
IV. ANALYSIS OF COMPUTATIONAL DYNAMICS
FIG. 6. Analytical results for the decay af20) andn(10) are
A Simple Penna model simulation was run wiitand 8 compared with those from simulation. The upper graphs correspond

chosen to give,,,=30. The population was initialized with to n(20), the lower ton(10). Analytical results are given by the
n(x,1)=0 with the exception of a spike ai(0,25) where solid lines, simulation results by the dotted lines. The analytical
10° organisms were created. The simulation was then alresults are obtained using only the highest four modes.
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Ne(1)~Agenos g 1)e 725+ Apgnpy f 1)e Y72 1 ( 1 )I"
+A23n23‘d| )e_t/7—23+ Azznzzyc(l )e_t/TZZ‘ tt )\k: 1— 1—_1)\kbe7ﬁ(|k7T+l).
22 —
(22) 1- 1= "

(24)

. . . . . The recursion relation between successive subpopulations
The notation used ig, (1), wherek is the mode index; is within a mode is pop
the number of time steps after the 100th iteratidp. are

mode coefficientgdetermined from the distribution af(l) ne;(1+1) CL L (1+1)
at the 100h iteration. () ¢ LoD
Taking more modes into account will give a more accu- ki Cr1 Hk
rate picture so that the behavior of any subpopulation can be (1-\ef-T+*D_pL (1)
described exactlyin the absence of age dynamic induced X K K ,
noise by (1—\ )P+ =T+ _p (I+1)e B
(25
» , whereL (I) is unchanged from the single-mutation case and
m(l)=k2l A o(le k. (23 given by Eq.(17).

The dynamic behavior we have considered is for unregu-
lated populations where there is no Verhulst factor and
steady state is obtained by suitable choice of birth rate and

V. CONCLUSION mutation rate. Dynamics in the presence of a Verhulst factor

) is considerably more complicated as any change in a sub-
As a natural extension to our work on the steady state,qnyation will act to change the birfor death rate, affect-

Penna model we have considered and obtained analyticily il other subpopulations. The modes, which in the ab-
expressions for the various forms of dynamics which can bgence of a Verhulst factor are independent, become coupled
displayed by a simple Penna model. Our approach can bgrough a shared birttor death rate. The resulting series of
applied to the governing equations derived in R&f to  coupled, nonlinear difference equations cannot be generally
analyze the dynamics of a variety of Penna models, such asudied using the decay modes analysis we have presented.
those with external death rates and birth cutoffs. For multipleHowever, depending how the Verhulst factor is implemented
disease Penna model$%1) the breakdown of the popula- there may be regimes in which the coupling between decay
tion into decay modes remains valid so long as there is nmodes is sufficiently weak that they may be treated as inde-
bias in the distribution of nonterminal mutations within bit pendent.

strings.
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