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Population dynamics in the Penna model

J. B. Coe and Y. Mao
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, United Kingdom

~Received 14 August 2003; published 29 April 2004!

We build upon the recent steady-state Penna model solution@J. B. Coe, Y. Mao, and M. E. Cates, Phys. Rev.
Lett. 89, 288103 ~2002!# to study the population dynamics within the Penna model. We show that any
perturbation to the population can be broken into a collection of modes each of which decay exponentially with
its respective time constant. The long time behavior of population is therefore likely to be dominated by the
modes with the largest time constants. We confirm our analytical approach with simulation data.
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I. INTRODUCTION

Genes, mutation, evolution, and ageing have been to
of intensive research@1–5#, particularly after the recent Ge
nome project. In 1995, a bit-string computer simulati
model for population evolution was introduced by Penna@6#
which successfully encompassed all those elements.
Penna model, essentially a mutation accumulation mo
has been so successful that it has rapidly established itse
a major model for population simulations@4#. Recently, ana-
lytical solutions have been presented for the steady state
the Penna model@7,8#, shedding insights into the inter
relationships between various Penna parameters of the s
lation model. Here, we build upon this analytical framewo
to study populations undergoing steady growth or dec
and to study the transient behavior of the model when
system is away from its steady-states. Previous attempts@9#
to analyze the population dynamics did not have the adv
tage of the full analytic steady state solution@7,8# and con-
sequently could not fully explore the dynamics of the mod
We find that the fluctuations in a population away fro
steady state can be decomposed into a collection of mo
each of which decays exponentially with its respective ti
constant. The long time behavior of a population will the
fore be dominated by the modes with the largest time c
stants. Our analytical results are confirmed by compari
with simulation results.

II. THE SIMPLE PENNA MODEL

In the Penna model@6#, an organism’s genome is repre
sented by a bit string. Organisms age in time steps an
each timestep an organism reads the corresponding bit
the bit string~e.g., second site at age 2!. If a site contains a 1
the organism develops a disease, and once it has accumu
T diseases it dies. In any time step an organism can re
duce with probabilityb. The child’s bit string is a copy of the
parent’s with a probabilitym of each site mutating into a 1
Positive mutations are rare in nature so a 1 mutating into a 0
is forbidden in the model. Variants of the Penna model e
in which an organism can only reproduce between cer
ages, and in which there is an external death rate giving e
organism a genome-independent chance of death in any
step.

Traditionally @10# the Penna model is implemented com
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putationally and the population controlled by the use o
Verhulst factor@11# which controls either the birth rate o
external death rate. The bit string is 32/64 bits long to ena
bitwise manipulation on integer-type variables. The fin
length bit string is an artifice of simulation and is not a
important consideration when approaching the model a
lytically. A solution to the Penna model in the steady sta
has been developed and is capable of dealing with a w
range of modifications to the model, namely arbitrary bi
and survivability functions@8#.

By building upon the steady state solution it is possible
consider dynamic behavior. The simplest form the stea
state solution takes is for the simple Penna model in wh
there is no nongenetic source of death, an organism dies
a single disease (T51) and can reproduce with equal pro
ability at any point during its life. For simplicity we presen
our dynamics analysis within this simple Penna model, si
it is straightforward to generalize to the case ofT.1 @8#.
The steady state solution@7# to the simple Penna model i
given in brief below.

An organism within the Penna model can be uniqu
characterized by its agex and the number of 0s on its b
string before the first 1. The number of 0s determines h
long the organism lives and is termed its string-lengthl.
Wherenj (x,l ) is the number of organisms with agex and
string lengthl at time stepj,

nj 11~0,l !5be2b l (
x50

`

nj~x,l !1mbe2b l (
l 8. l

`

(
x50

`

nj~x,l 8!,

~1!

wheree2b512m is the probability of avoiding a mutation
In the stationary statenj 11(x,l )5nj (x,l ) and given that an
organism with string lengthl lives for l time steps, the sum
over ages ofn(x,l ) is ln(0,l ). The sum over ages is writte
asn( l )5(xn(x,l ). Then Eq.~1! simplifies to

05be2b ln~ l !2
n~ l !

l
1mbe2b l (

l 8. l

`

n~ l 8!. ~2!

This expression can be solved to generate a recursion
tion ~see Fig. 1!.
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n~ l 11!

n~ l !
5

l 11

l

eb l2bl

eb( l 11)2b~ l 11!e2b
. ~3!

For any population there is a maximum sustainable str
length l max, the stability analysis of which@8,7# leads the
stationary-state interdependence ofb andb:

l max,
1

12e2b
. ~4!

b5
1

l max
eb l max. ~5!

For finite-length bit strings,l max of course cannot exceed th
bit string itself.

III. DYNAMICS IN THE SIMPLE PENNA MODEL

Penna model dynamics can be divided into three case
~a! The birth rate or/and mutation rate are altered fro

their steady-state values leading to growth or decline of
total populationn, and associated changes in the distribut
n( l ) of the subpopulations with string lengthsl.

~b! A change inn( l ) from the steady state distributio
predicted in Eq.~3! is followed by relaxation back to the
steady state.

~c! Within a subpopulationn( l ), the distribution of ages
n(x,l ) can fluctuate with time if the population is not i
steady state.

A. Steady growth and decline in the simple penna model

With an unsuitable choice of birth rate, mutation rate, a
maximum string length present in a population, stationa
state behavior will not be found. Eventually the behavior
the entire population will be dominated by the growth
decline of the longestl type. The population can exist in
state of steady growth or decline in which the relative si
of subpopulations remain the same. The governing equa
can be written as

FIG. 1. Life-span distribution for a simple Penna model w
l max530, b5

1
30. Analytical results~3! are compared with those

from simulation~h!. Simulation size 107.
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nj 11~0,l !5be2b l (
x50

`

nj~x,l !1mbe2b l (
l 8. l

`

(
x50

`

nj~x,l 8!.

~6!

If we label the rate of growthr, then in any time step the
number of young produced is 11r times that in the previous
time step. Once the population has been growing in this m
ner for some time, populations at successive iterations
related bynj 11(x,l )5(11r )nj (x,l ). As in the steady state
case,n( l ) is defined to be the sum over ages ofn(x,l ). We
defineLr( l ) so thatn( l )5Lr( l )n(0,l ). This leads to a sim-
plified steady-growth equation

05be2b lnj~ l !2
~11r !

Lr~ l !
n~ l !1mbe2b l (

l 8. l

`

nj~ l 8!. ~7!

whereLr( l ) is given by

Lr~ l !5

12S 1

11r D
l

12
1

11r

. ~8!

The steady-growth equation can be manipulated to giv
recursion relation for the relative sizes of successivenj ( l )
~see Fig. 2!

nj~ l 11!

nj~ l !
5

Lr~ l 11!

Lr~ l !

~11r !eb l2bLr~ l !

~11r !eb( l 11)2bLr~ l 11!e2b
.

~9!

The conditions for steady growth give a limit on the val
of the maximum sustainable string lengthl max and determine
the value of the birth rateb:

l max,

lnS 12eb

12eb~11r !
D

lnS 1

11r D
, ~10!

FIG. 2. Life-span distributions for a Penna model undergo
steady growth with l max530, r 50.05 ~1! and l max530, r 5
20.05 ~n!.
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b5
reb l max

12S 1

11r D
l max

. ~11!

In the limit of vanishingr, a power series expansion of the
expressions will give, to leading order, Eqs.~4! and ~5!.

B. Subpopulation dynamics in the simple penna model

For subpopulation dynamics we consider the time-s
evolution of an arbitrary distribution ofn( l ) ( l< l max) where
the birth and mutation rate take their steady-state values.
dynamics of subpopulations within the Penna model can
considered to be that of a series of decay modes. Any s
population can be expressed as the sum over contribut
from a set of decay modes such that

nj~x,l !5(
k

Aknk, j~x,l !, ~12!

where the constantsAk are to be determined. Within eac
decay mode, labeled by its indexk, the population dies away
exponentially so that

nk, j 11~x,l !5~12lk!nk, j~x,l !. ~13!

Within each mode there is a maximum value ofl above
which nk, j ( l ) is zero, this is labeledl k . The mode indexk is
chosen so thatk is the number of nonzero subpopulatio
within the mode. Once the relationship betweennj (x,l ) and
nj 11(x,l ) has been established Eq.~1! can be considered to
be a sum of eigenequations each of which governs the
havior of a given mode. The equation governing the tim
step evolution of the longest string length within a mode c
be written as

nk, j 11~0,l k!5be2b l k(
x50

`

nk, j~x,l k!. ~14!

Since the time-step evolution ofnk, j (x,l ) is known from Eq.
~13! the sum over ages can be evaluated andlk identified as
the solution to the equation

lk512

12S 1

12lk
D l k

12
1

12lk

be2b l k. ~15!

The characterstic decay timetk for any mode is defined a
the time taken for the mode to decay toe21 of its initial size
~see Fig. 3!.

Manipulation of Eq.~1! for an individual mode gives a
recursion relation for the relative sizes of subpopulatio
within a mode~see Fig. 4!

nk, j~ l 11!

nk, j~ l !
5

Lk~ l 11!

Lk~ l !

~12lk!e
b l2bLk~ l !

~12lk!e
b( l 11)2bLk~ l 11!e2b

,

~16!
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whereLk( l ) is given by

Lk~ l !5

12S 1

12lk
D l

12
1

12lk

. ~17!

Each mode mimics the behavior of a population undergo
steady decline, as given in Eq.~9!. Note that the dynamic
nature of this model means that the general steady-state
lution presented in Ref.@8# does not give a recursion relatio
of exactly this nature. Naturally in the limit of vanishinglk
the recursion relation above gives that from the steady-s
Penna model.

nk, j ( l ) retains its meaning from the steady-state analy
as a sum ofnk, j (x,l ) over agesx. As in the steady-state
analysis, Lk( l ) gives the sum over ages:nk, j ( l )
5Lk( l )nk, j (0,l ). The decay mode for whichl k5 l max has a
decay rate of 0 (lk50) and is the steady-state solution.

An arbitrary distribution ofnj ( l ) can be broken down into
a sum over decay modes. Decomposition of annj ( l ) distri-
bution into decay modes can be done using a ‘‘top dow
approach: The largest value ofl for which nj ( l )Þ0 gives the
l k value for the largest mode,Ak is then chosen so tha

FIG. 3. lk ~1! and decay timetk ~n! plotted againstl k for a
simple Penna model withl max530, b5

1
30.

FIG. 4. Sizes of subpopulations within decay modes forb5
1
30,

l max530 with l k525 ~1!, l k520 ~n! and l k515 ~3!. These plots
have been rescaled~they are not all normalized to 1! to plot them all
on the same axes.
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nj ( l k)5Aknk, j ( l k). Having determinedAk , Ak21 follows as:
nj ( l k21)5Aknk, j ( l k21)1Ak21nk21,j ( l k21). This process
is repeated, accounting for all contributions from high
modes at eachl, until all Ak are determined. Any distribution
of nj ( l ) @n( l )50 for l . l max] can be uniquely broken down
into decay modes.

C. Age distribution dynamics in the simple Penna model

The dynamic and steady state behavior of the sim
Penna model is dependent on the distribution of ages ta
a particular form. An arbitrary distribution ofn(x,l ) will
have its own dynamic behavior and must be considered
separate case. In the simple Penna model the evolutio
n(x,l ) over time without contributions from mutation can b
dealt with by a Leslie matrix@12# of rank l acting on a vector
n(x,l ) where the vector components correspond to ages.
n(x,l ) the allowed ages are 0,1,2,3,. . . ,l 21 and the time
step evolution can be described by the following mat
equation:

S n~0,l !

n~1,l !

n~2,l !

n~3,l !

A

D
j 11

5AS n~0,l !

n~1,l !

n~2,l !

n~3,l !

A

D
j

, ~18!

where the matrixA is given by

S be2b l be2b l be2b l be2b l . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .

A A A A �

D . ~19!

We require eigenvalue solutions to this so that

n~x,l ! j 115jn~x,l ! j , ~20!

wherej are the eigenvalues of the matrixA. These eigenval-
ues can be identified as nonunity solutions to the polynom

j l 112~be2b l11!j l1be2b l50. ~21!

The large eigenvalues give decay at roughly the rate
dicted from then( l ) analysis and oscillation around this d
cay. The small eigenvalues play no significant part over la
time scales.jmax the largest eigenvalue, is related to the d
cay rate of the decay modenk j( l ) by lk512jmax. If l
!1/lk then the long term behavior of any perturbation
n( l ) will be dictated by a series of decay modes.

IV. ANALYSIS OF COMPUTATIONAL DYNAMICS

A Simple Penna model simulation was run withb andb
chosen to givel max530. The population was initialized with
n(x,l )50 with the exception of a spike atn(0,25) where
105 organisms were created. The simulation was then
04190
r

le
g

a
of

or

al

e-

e
-

l-

lowed to run generating data forn( l ) at each iteration. As the
maximum life-span in the population is less thanl max the
population will eventually decay away to nothing. The spi
was chosen as the initial distribution as any initial distrib
tion can be considered to be a sum of such spikes.

Initially the dynamics ofn(25) will be dominated by age
distribution dynamics and cannot be explained in terms
modes. After 100 iterations this noise has all but disappea
and the subpopulation can be seen to decay exponential
predicted by Eq.~13! ~see Fig. 5!. All other subpopulations
initially grow to later enter a period of exponential dec
~see Fig. 6!.

Considering the population after 100 iterations, mod
with tk,100 will play an insignificant part in the long term
dynamics of any subpopulation. After large number of tim
stepst, each subpopulation, to a good approximation, can
represented by the highest few modes~with largest decay
times!:

FIG. 5. A plot ofn~25! against time from simulation results. Th
population is initialized withn(0,25)5105 and all othern(x,l ) set
to zero. The sudden drop in population at 25 time steps arises
cause all of the initial population die once they reach age 25. A
100 iterations the noise induced by age distribution dynamics
essentially disappeared and the population dies away exponen
with time constanttk of 832.4.

FIG. 6. Analytical results for the decay ofn(20) andn(10) are
compared with those from simulation. The upper graphs corresp
to n(20), the lower ton(10). Analytical results are given by th
solid lines, simulation results by the dotted lines. The analyti
results are obtained using only the highest four modes.
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nt~ l !'A25n25,0~ l !e2t/t251A24n24,0~ l !e2t/t24

1A23n23,0~ l !e2t/t231A22n22,0~ l !e2t/t22
•••.

~22!

The notation used isnk,t( l ), wherek is the mode index,t is
the number of time steps after the 100th iteration.Ak are
mode coefficients@determined from the distribution ofn( l )
at the 100th iteration#.

Taking more modes into account will give a more acc
rate picture so that the behavior of any subpopulation can
described exactly~in the absence of age dynamic induc
noise! by

nt~ l !5 (
k51

25

Aknk,0~ l !e2t/tk. ~23!

V. CONCLUSION

As a natural extension to our work on the steady st
Penna model we have considered and obtained analy
expressions for the various forms of dynamics which can
displayed by a simple Penna model. Our approach can
applied to the governing equations derived in Ref.@8# to
analyze the dynamics of a variety of Penna models, suc
those with external death rates and birth cutoffs. For multi
disease Penna models (T.1) the breakdown of the popula
tion into decay modes remains valid so long as there is
bias in the distribution of nonterminal mutations within b
strings.

The decay coefficientslk and relationship betwee
nk, j ( l ) within modes for models withT.1 are given as they
may be of particular interest. Eachlk satisfies
s

s

04190
-
e

e
al
e
be

as
e

o

lk512

12S 1

12lk
D l k

12
1

12lk

be2b( l k2T11). ~24!

The recursion relation between successive subpopulat
within a mode is

nk, j~ l 11!

nk, j~ l !
5

CT21
l 11

CT21
l

Lk~ l 11!

Lk~ l !

3
~12lk!e

b( l 2T11)2bLk~ l !

~12lk!e
b( l 112T11)2bLk~ l 11!e2b

,

~25!

whereLk( l ) is unchanged from the single-mutation case a
given by Eq.~17!.

The dynamic behavior we have considered is for unre
lated populations where there is no Verhulst factor a
steady state is obtained by suitable choice of birth rate
mutation rate. Dynamics in the presence of a Verhulst fac
is considerably more complicated as any change in a s
population will act to change the birth~or death! rate, affect-
ing all other subpopulations. The modes, which in the
sence of a Verhulst factor are independent, become cou
through a shared birth~or death! rate. The resulting series o
coupled, nonlinear difference equations cannot be gener
studied using the decay modes analysis we have prese
However, depending how the Verhulst factor is implemen
there may be regimes in which the coupling between de
modes is sufficiently weak that they may be treated as in
pendent.
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